Projekt Elektronik

Mess- und Regelungstechnik GmbH

Flux Density Of A Magnet In Distance X

Application Note PE007

For the flux density caused by a round magnet on its magnetic axis the following formula applies:

(1)
$$B_X(X) = \frac{B_R}{2} \left[\frac{L+X}{\sqrt{R^2 + (L+X)^2}} - \frac{X}{\sqrt{R^2 + X^2}} \right]$$
 for $X > 0$

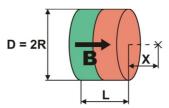


figure 1: round magnet

not valid for AlNiCo500; adopted with kind permission of the company IBS-Magnet in Berlin

Thereby B_R is the remanence of the magnet. It is the residual magnetization of the magnet after it had been magnetized up to saturation.

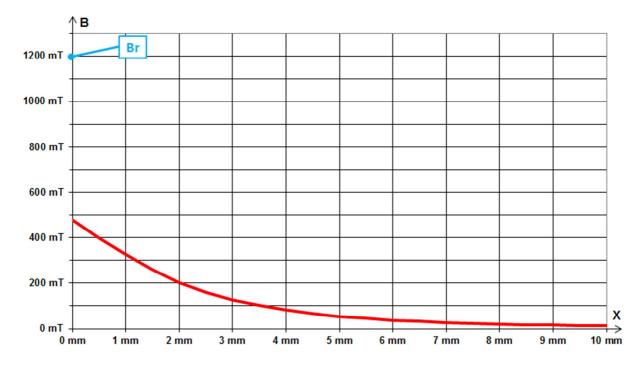


figure 2: flux density course for D = 2R = 6 mm, L = 4 mm, $B_R = 1200$ mT (typ. neodymium)

The flux density at the surface is **less than the half** of the remanence and **decreases** with increased distance.

For measurements with magnetic field probes, the distance of the active area to the surface of the probe has to be considered (typ. 0.3...1.0 mm).

Application Note PE007